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1 Introduction

Modern finance is undergoing an important change in the perception
of economic agents, i.e., from a representative, rational agent approach
towards a behavioral, agent-based approach with markets boundedly
rational, where heterogeneous agents apply rule of thumb strategies.
The traditional approach, rested on simple analytically tractable mod-
els with a representative, perfectly rational agent and mathematics as
the main tool of analysis. The new behavioral approach fits much bet-
ter with agent-based simulation models and computational and numer-
ical methods have become an important tool of analysis, [5]. The new
behavioral, heterogeneous agents approach challenges the traditional
representative rational agent framework. Heterogeneity in expectations
can lead to market instability and complicated price dynamics. Prices
are driven by endogenous market forces. Typically, in the heterogeneous
agents model (HAM), two types of agents are distinguished: fundamen-
talists and chartists. Fundamentalists base their expectations about
future asset prices and their trading strategies on market fundamen-
tals and economic factors, such as dividends, earnings, macroeconomic
growth, unemployment rates, etc. Chartists or technical analysts try to
extrapolate observed price patterns, such as trends, and exploit these
patterns in their investment decisions. One such model was developed
by Brock and Hommes in 1998, [3]. In our early work we focused on
a simple HAM with two or four types of beliefs, [15], [16], [17], [18].
These beliefs were fixed for all our simulations. In our previous pa-
pers, [16], [18], we introduced a memory and some learning schemes
to the model of Brock and Hommes. In this paper we use the core of
the Brock and Hommes model introducing further extensions, such as
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stochastic formation of beliefs and parameters including the memory
length. Another extension is the application of the Worst Out Algo-
rithm (WOA). In [14] we showed how memory length distribution in
the agents’ performance measure affects the persistence of the gener-
ated price time series. Our motivation is to trace the memory length in
the price time series with different replacement ratios of the improved
WOA. When used in the HAM, the WOA should increase the persis-
tence of returns. Wavelet analysis is a convenient tool that can be used
to detect these events and especially to identify activities at various
scales of the price time series. Wavelets are more useful for frequency
detection in price time series than Fourier analysis because they are
better in identifying price changes in the mood of the financial market
over time. The wavelet analysis uses the time-scale domain instead of
the time-frequency domain. A typical stylized fact for financial mar-
kets is the existence of clusters of both high positive returns and low
negative returns in the realizations of the price time series. We can ret-
rospectively analyze which part of the set of trading strategies was used
on the financial market and we can estimate their statistical properties.

The first part of the paper concerns a heterogeneous agent model,
which is an extension of the Brock and Hommes model, [3]. The second
part briefly introduces wavelets. Part three deals with the implemen-
tation of the WOA into HAM. The last part of the paper investigates
qualitative changes in the financial market structure represented by
the HAM under the presence of sentiment persistence and sentiment
change. Sentiment change is simulated by changing the mean of the
trend gh for the new strategies that enter the market via the WOA.

2 A Heterogeneous Agent Model

Capital markets are perceived as systems of interacting agents who im-
mediately process new information. Agents adapt their predictions by
choosing from a limited number of beliefs (predictors or trading strate-
gies). Each belief is appreciated by a performance measure. Agents on
the capital market use this performance measure to make a rational
choice which depends on the heterogeneity in agent information and
subsequent decisions of the agent either as a fundamentalist or as a
chartist, [7], [8].

The model presents a form of evolutionary dynamics, called Adap-
tive Belief System, in a simple present discounted value (PDV) pric-
ing model. The first part of this model was elaborated by Brock and
Hommes, [3].
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Consider an asset pricing model with one risky asset and one risk
free asset. Let pt denote the price (ex dividend) per share of the risky
asset at time t, and let {yt} be a stochastic dividend process of the
risky asset. The supply of the risk free asset is perfectly elastic at the
gross risk free interest rate R, which is equal to 1 + r, where r is the
interest rate. For the dynamics of the wealth we can write

Wt+1 = RWt + (pt+1 + yt+1 −Rpt) zt, (1)

where zt denotes the number of shares of the asset purchased at time t.
Random variables at time t are in bold. Et and Vt are the conditional
expectation and conditional variance operators based on the set of pub-
licly available information consisting of past prices and dividends, i.e.,
on the information set Ft = {pt, pt−1, . . . ; yt, yt−1, . . . }. Let Eh,t and
Vh,t denote beliefs (or forecast) of type h investor about the condi-
tional expectation and conditional variance. Investors are supposed to
be a myopic mean-variance maximizers so that the demand zh,t for
risky asset is obtained by a solving of the following criterion

max
zh,t

{
Eh,t [Wt+1]− a

2
Vh,t [Wt+1]

}
, (2)

where the risk aversion coefficient, a > 0, is assumed to be the same
for all traders. Thus the demand zh,t of type h for risky asset has the
following form

Eh,t [pt+1 + yt+1 −Rpt]− aσ2zh,t = 0, (3)

zh,t =
Eh,t [pt+1 + yt+1 −Rpt]

aσ2
, (4)

assuming that the conditional variance of excess returns is a constant
for all investor types

Vh,t (pt+1 + yt+1 −Rpt) = σ2
h = σ2. (5)

Let zs
t be the supply of outside risky shares. Let nh,t be a fraction of

type h investor at time t. The equilibrium of the demand and supply
is

H∑

h=1

nh,t

{
Eh,t [pt+1 + yt+1 −Rpt]

aσ2

}
= zs

t , (6)

where H is the number of different investor types.
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For the special case of zero supply, i.e., zs
t = 0, for all t, we get

a benchmark notion of the rational expectations fundamental solution
p∗t . We can thus write

Rp∗t = Et

[
p∗t+1 + yt+1

]
. (7)

In the case when the dividend process {yt} is an independent, identically-
distributed (IID) process, Et{yt+1} = ȳ, which is a constant. In the
special case when {yt} is IID we have a standard notion of fundamen-
tal. Let p∗t = p̄, where p̄ solves

Rp̄ = p̄ + ȳ. (8)

Equation (7) has infinitely many solutions, but only one constant
solution p̄ = ȳ/ (R− 1) of (8) that satisfies the transversality condition

lim
t→∞

Et [pt]
Rt

= 0. (9)

For our purpose, it is convenient to work with a deviation xt from the
benchmark fundamental price p∗t , i.e., xt = pt − p∗t .

In the case of zero supply of outside shares , i.e., zs
t = 0, the market

equilibrium is as follows

Rpt =
H∑

h=1

nh,t {Eh,t [pt+1 + yt+1]} . (10)

Now, let us make the following assumptions:
A1)

Eh,t [yt+1] = Et [yt+1] , h = 1, ...,H, (11)

A2) all forecasts Eh,t [pt+1] have the following form

Eh,t [pt+1] = Et [p∗t ] + fh (xt−1, ..., xt−mh
) . (12)

Each forecast fh (xt−1, ..., xt−mh
) represents a model of the capital

market, for which trader type h believes that prices deviate from the
fundamental price. The number of lags mh denotes the size of the in-
formation set of trader type h, which is the memory length, i.e., the
investment horizon of trader type h.

Let us concentrate on the evolutionary dynamics of the fractions
nh,t of different h-investor types, i.e.



Wavelets and Estimation of the Persistence in the HAM 5

Rxt =
H∑

h=1

nh,t−1fh (xt−1, ..., xt−mh
) ≡

H∑

h=1

nh,t−1f
mh
h,t , (13)

where nh,t−1 denotes the fraction of investor type h at the beginning
of period t, before the equilibrium price xt has been observed. The
realized excess return in period t over period t + 1 denoted, Zt+1 is
computed as

Zt+1 = pt+1 + yt+1 −Rpt. (14)
Now we need a performance measure generated by forecasts fmh

h, t .
Let the performance measure πh,t be defined by

πh,t = Et

[
Zt+1ρh,t

aσ2

]
, (15)

where

ρh,t = Eh,t [Zt+1] = fmh
h,t −Rxt. (16)

So the π-performance is given by the realized performance for the h-
investor. Let the updated fractions nh,t be given by the discrete choice
probability

nh,t = exp

(
β

1
mh

mh∑

k=1

πh,t−k

)
/Yt, (17)

where

Yt =
H∑

j=1

exp

(
β

1
mh

mh∑

k=1

πh,t−k

)
. (18)

When mh = 1 is the same for all types, we get the Brock and
Hommes model, [3]. If bh = 0, the investor is called a pure trend chaser
if gh > 0 and a contrarian if gh < 0. If gh = 0, the investor is called
an upward (downward) biased if bh > 0 (bh < 0). In the special case
gh = bh = 0, the investor is called fundamentalist, i.e., the investor be-
lieves that prices return to their fundamental values. A fundamentalist’s
strategy is based on all past prices and dividends in his information set,
but he does not know the fractions nh,t of the other belief types.

2.1 Stochastic Beliefs Formation

To demonstrate the dynamics of the investor types we simulate the
trend gh and the bias bh of type h trader as realizations from the nor-
mal distributions, N(0, 0.16) and N(0, 0.09). The memory length mh of
the trading strategy fh,t is a realization from the uniform distribution,
U(1, 100).
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3 Wavelets

The traditional approach to the application of spectral techniques to
economic and financial data, such as the Fourier transform, has fo-
cused on the identification of frequency components. The key problem
with the application of the Fourier transform to financial data is that
the highlighted spectrum of a signal is global rather than being local-
ized. Conversely, the wavelet transform offers localized frequency de-
composition. It also provides information what frequency components
are present and where they are occurring. As a result wavelets have
significant advantages over a basic Fourier analysis when the object
under study is non-stationary and non-homogeneous [1].

A very important attribute of wavelets is that they are zero phase,
not very smooth, and that they have very few vanishing moments,
which makes then suitable for detecting regime shifts and discontinu-
ities. Wavelet analysis provides an alternative and preferable solution,
especially in financial market time series, since it allows the degree of
localization to be automatically and appropriately adapted, see [4], [1],
[12].

3.1 Multiresolution Analysis

The main feature of wavelet analysis is the possibility to decompose a
time series into its constituent multiresolution components. The mul-
tiresolution analysis (MRA) of a time series x(t) is given by the follow-
ing expression

x (t) = SJ + DJ + DJ−1 + . . . + Dj + . . . + D1, (19)

where
SJ =

∑

k

sJ,kφJ,k (t) , (20)

Dj =
∑

k

dj,kψj,k (t) . (21)

SJ denotes the smooth and DJ , DJ−1, . . . , Dj , . . . , D1 are the details
of the signal. The sequence of terms SJ and DJ , DJ−1, . . . , Dj , . . . , D1

represents a set of signal components that provide representations of
the signal at the different resolution levels j = 1, 2, . . . , J. For a more
detailed treatment see [1] and [12]. For the MRA we use the Daubechies
(4) wavelets.
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3.2 Wavelet Variance Analysis

The wavelet variance (or energy) decomposes the variance of stochastic
processes on scale basis and hence is important in financial time series
processing. The wavelet variance is a succinct alternative to the power
spectrum based on the Fourier transform and is often easier to interpret
than the frequency-based spectrum [12]. Such scale decomposition in
time helps us track the evolution of the energy contribution at various
scales, which is related to traders’ investment horizons.

We also use wavelet variance decomposition to get values of the
aggregate energy at scales for all simulation periods. We depict these
values on a pie graph, see Figure 4.

4 Learning with the WOA

This section implements wavelets and the WOA into HAM modeling.
As mentioned above, wavelet analysis is a very convenient tool for ac-
tivity detection at various scales of the price time series. It is also more
suitable for frequency detection in price time series than Fourier anal-
ysis because price changes in the financial market are better detected
in time.

4.1 The Worst Out Algorithm

In the heterogeneous agents model presented in the previous section
it is possible to set different degrees of agents’ heterogeneity, such as
trend, bias and memory. Due to these features the model more closely
replicates the events of a real financial market, see [14]. The WOA adds
behavioral aspect to the model and we obtain outcomes that are closer
to stylized facts.

The WOA periodically replaces the trading strategies that have the
lowest performance level of the strategies presented on the market by
new ones. Without loss of generality, this algorithm is constructed so
that it evaluates and ranks the performance of all fifteen strategies in
the market after every 40 iterations in descending order and the last
strategy and/or several strategies are replaced by a new strategy and/or
several strategies. The new strategies that enter the financial market
have the same stochastic parameters as the initial set of strategies. The
use of the WOA in simulations shows that the implementation of the
WOA can significantly change price time series parameters and modify
the behavior of investors on the financial market.
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4.2 Simulations

We have used the WOA in an effort to gain a better understanding
of the evolution of financial market dynamics. We compare eight cases
that differ in the number of replaced trading strategies, i.e., the re-
placement ratio. Our motivation is to trace the memory structure in
the price time series with different replacement ratios of the updated
version of the WOA. The WOA should increase the persistence of the
returns.

The algorithm replaces zero, one, two, three, four, five, six, and eight
strategies with the lowest performance by 0, 1, 2, 3, 4, 5, 6, and 8 new
strategies, respectively (i.e. 0WOA, 1WOA, 2WOA, 3WOA, 4WOA,
5WOA, 6WOA, and 8WOA, respectively). The set of all strategies used
for the simulation is composed of fifteen different trading strategies
with specific parameters. The replacement ratio of the market strategies
ranges from 0% to 53.3%. The higher the replacement ratio in the
simulation, the more dramatic changes in the mood on the financial
market are observed.

As mentioned above, simulations are performed with fifteen trading
strategies or beliefs and the intensity of choice, β, is set to 40.

4.3 Persistence

The persistence level of the simulated financial time series is represented
here by the Hurst exponent. For the 0WOA case (no replacement of
strategies), the initial set of strategies remains unchanged throughout
all simulations, i.e., there is no learning effect due to replacement, and
we can expect the values of the Hurst exponent to be close to the EMH
case, i.e., H = 0.5. When the WOA is implemented, we observe a strong
learning effect that leads to long-memory (persistent) behavior of price
returns.

The highest level of persistence is in the 2WOA case (13.3% replace-
ment rate) when the market has enough time to learn. When the num-
ber of replaced strategies is higher, the learning effect is weakened by
the randomly chosen new strategies that appear on the financial mar-
ket. With higher replacement ratio, the value of the Hurst exponent
declines as the learning is “diluted” by new strategies that randomly
enter the financial market. This is caused by a large number of incom-
ing strategies (randomly generated) that makes the market portfolio
of strategies richer on random events and restrains the market learn-
ing effect. This phenomenon takes place from the 5WOA case to the
8WOA case (33 % - 53 % replacement rate), see Figure 1.
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Fig. 1. The value of the Hurst exponent with different replacement rate of
the WOA.

4.4 Energy Decomposition at Scales

The following Figures 2 and 3 depict scale energy decomposition, i.e.,
decomposition of the wavelet variance. For this decomposition we use
a moving variance (window length 255) of the MRA details D1, ..., D6.
Examining the cases 1WOA and 8WOA, we investigate how the energy
changes at scales during the simulation. In Figure 2, the 1WOA case, we
see a dramatic change of financial market structure during simulations.
For example, there is a high increment of the energy at scales D1 and
D2 at time 6000. This increment lasts for about 200 iterations. Unlike
the 1WOA case, there are no such changes in Figure 3, the 8WOA case.
In comparison to the 1WOA case, the overall energy level at scales D1,
D2, D3 is higher. This is mainly due to the higher replacement ratio of
the WOA.

Comparing the aggregate energy values at scales for low and high
replacement ratios, we observe significant differences. Figure 4 depicts
the low replacement ratio (6.7%, 1WOA) and the high replacement
ratio (33%, 5WOA). The main difference is at scales D2 and D3, where
a higher activity at lower frequencies or higher scale in the 1WOA
case is observed. This implies that strategies with longer investment
horizons are preferred when there is a smaller fluctuation of traders on
the financial market.

5 Sentiment Change on the Market

With the objective of deepening the behavioral aspects of the HAM,
in this subsection we investigate the sentiment of investors present on
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Fig. 2. The 1WOA case. Moving sum of squared wavelet detail vectors (win-
dow length 255) of the Daublet (4) DWT multiresolution analysis

Fig. 3. The 8WOA case. Moving sum of squared wavelet detail vectors (win-
dow length 255) of the Daublet (4) DWT multiresolution analysis

Fig. 4. Aggreagate energy at scales of the simulated time series with the
1WOA and 5WOA
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the financial market. For this purpose, we introduce the change of the
sentiment. We define the change of the sentiment as a shift of the trend
gh of a newly incoming investor strategy h on the financial market.

Our hypothesis is that when there are changes of the sentiment on
the financial market, represented by shifts of the expected value of the
trend gh, the Hurst exponent of the returns will decrease due to the
break up of the traders’ structure that was created by the WOA. For the
model defined above the sentiment change simulates more information
and different mood phases entering the financial market.

In the first case, called the no sentiment change case, the trend gh

is generated by a normal distribution with zero mean and variance
equal to 0.16 throughout the entire simulation. The second case, i.e.,
the sentiment change case, examines consequences of the sentiment
change, specifically how the persistence of the generated time series
is influenced. In the sentiment change case the expected value of gh

varies. For the first 2000 iterations the trend gh of the newly incoming
strategies on the financial market is generated from the distribution
N(0, 0.16). Next, for the interval 2000−4000 iterations, the trend gh is
generated from the distribution N(+0.1, 0.16). For another 2000 steps
(the interval 4000−6000) the trend gh is generated from the distribution
N(−0.1, 0.16). For the interval 6000 − 8000 the trend gh is generated
from the distribution N(+0.1, 0.16), and finally for the interval 8000−
10000 the trend gh is generated from the distribution N(0, 0.16). This
procedure defines the sentiment structure on the financial market.

In the sentiment case, the simulations are also performed with fif-
teen trading strategies (beliefs). We use 4WOA, i.e., we replace four
strategies, so the replacement ratio is 27%. This ratio may seem quite
high, however, such setup is good for the simulation of the sentiment
changes. Other parameters have the same values as in the preceding
simulation.

The values of the Hurst exponent for both cases, the change of the
sentiment case and the case without sentiment change, are in Table
1 and the descriptive statistics of returns are in Table 2. The first
row contains the value of the Hurst exponent for the whole interval
(all 10000 iterations). Next rows present the values of the intervals
during simulation. In general, the case with a sentiment change has
lower Hurst exponent and more closely replicates real financial market
data. The higher Hurst exponent for the no sentiment change case is
a consequence of a learning mechanism on the financial market even
though it is disturbed by the WOA. It is clear that in terms of financial
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market efficiency the WOA has a lower impact than the change of the
sentiment or forecasts of investors.

Table 1. Values of the Hurst exponent for the sentiment and no sentiment
change case

Interval H.exponent Sentiment H.exponent No Sentiment

0 – 10K 0.620 0.656
0 – 2K 0.698 0.794
2 – 4K 0.719 0.783
4 – 6K 0.676 0.748
6 – 8K 0.619 0.799
8 – 10K 0.547 0.744

Table 2. Descriptive statistics for the sentiment and no sentiment change
case

Descriptive stat. Sentiment change No Sentiment change

Mean 0.032 0.011
Variance 0.059 0.0009
Kurtosis 3.584 1.081
Skewness 0.945 0.875

5.1 Wavelet Analysis of the Sentiment Change

The overall activity in the no sentiment change case is low in compar-
ison to the sentiment change case, see Figures 5 and 6. The sentiment
change causes the activity or energy to shift to higher frequencies, i.e.,
lower scales, for example compare Figures 5 and 6.

6 Conclusions

The concept of beliefs replacement represented by the WOA dramat-
ically modifies the financial market dynamics. In the first part of the
paper we demonstrate that the behavior of the HAM changes consid-
erably when we implement the modified WOA. The implementation of
this type of the WOA, in which we can change more beliefs (trading
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Fig. 5. The no sentiment change case aggregate activity (energy) of investors
at six scales. D1 is a low scale component (high frequency), D6 is the highest
scale component (low frequency) of a given time series.

Fig. 6. The sentiment change case aggregate activity (energy) of investors at
six scales. D1 is a low scale component (high frequency), D6 is the highest
scale component (low frequency) of a given time series.

strategies), considerably increases the level of persistence of the price
time series. However when we increase the number of replaced strategies
beyond some point (4WOA), the value of the Hurst exponent declines
as the learning is ”diluted” by new strategies that randomly enter the
financial market.

The application of the sentiment change on financial markets pro-
vides a new possibility for the incorporation of the behavioral approach
into the theoretical financial market model. In general, the case with
a sentiment change has a lower value of the Hurst exponent and its
value is closer to the level of the Hurst exponent estimated from real
financial market data. The higher level of the Hurst exponent for the no
sentiment change case is a consequence of a learning mechanism on the
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financial market even though it is disturbed by the WOA. In terms of
financial market efficiency, the WOA has a lower impact than a change
of the sentiment or forecasts of investors.
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